This paper focused on the design and implementation of guidance and gain-scheduling autopilot for modeled rocket. Autopilot implemented by using classical gain-scheduling method that designed to work within certain velocity and angle-of-attack (AOA). Input command for the autopilot is provided by guidance system which processed kinematic and dynamic of the rocket, so it could follow the desired trajectory. Guidance and autopilot were implemented together with the navigation system and nonlinear model of the rocket using Hardware-in Loop Simulation (HILS) on PC/104. Results showed that the designed gain-scheduling autopilot is stable on nonlinear model tests and also on delay effect and digital implementation tests, with acceptable transient and steady state performance. Integration with navigation system showed that the overall systems could follow the desired trajectory with 10 m final error distance on windy condition.